Laplace Transform Pairs for Bilateral

Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	1	$\operatorname{Re}(s) > 0$
3	-u(-t)	1	$\operatorname{Re}(s) < 0$
		S	
4	t^{n-1} $u(t)$	1	$\operatorname{Re}(s) > 0$
	$\frac{1}{(n-1)!}u(t)$	s ⁿ	
5	t^{n-1} ()	1	$\operatorname{Re}(s) < 0$
	$\left -\frac{1}{(n-1)!}u(-t)\right $	$\overline{s^n}$	
6	$e^{-at}u(t)$	1	$\operatorname{Re}(s) > -a$
	<i>c u</i> (<i>i</i>)	$\frac{1}{s+a}$	
7	$-e^{-at}u(-t)$	1	$\operatorname{Re}(s) < -a$
		$\overline{s+a}$	
8	t^{n-1} ()	1	$\operatorname{Re}(s) > -a$
	$\frac{1}{(n-1)!}e^{-u}u(t)$	$\overline{(s+a)^n}$	
9	t^{n-1} $t ()$	1	$\operatorname{Re}(s) < -a$
	$-\frac{1}{(n-1)!}e^{-at}u(-t)$	$\overline{(s+a)^n}$	
10	$\delta(t-T)$	e^{-sT}	All s
11	$\left[\cos w_0 t \right] u(t)$	S	$\operatorname{Re}(s) > 0$
		$\overline{s^2 + w_0^2}$	
12	$\sin w_0 t u(t)$	Wo	$\operatorname{Re}(s) > 0$
		$\frac{1}{s^2 + w_0^2}$	
13	$e^{-at}\cos w t u(t)$	$\frac{s+a}{s+a}$	$\operatorname{Re}(s) > -a$
	$[c \cos w_0 i \mu(i)]$	$\frac{1}{(s+a)^2 + w_1^2}$	(*)
14		$(3+\alpha) + w_0$	$\mathbf{Re}(s) > -a$
17	$e^{-\sin w_0 t} \mu(t)$	$\frac{W_0}{()^2 + 2}$	$\operatorname{Re}(3) \geq u$
		$(s+a) + w_0^2$	
15	$u(t) = \frac{d^n \delta(t)}{d^n \delta(t)}$	s ⁿ	All s
	dt^n		
16	$u_{-n}(t) = u(t) * \cdots * u(t)$	1	$\operatorname{Re}(s) > 0$
		s ⁿ	

Property	Signal	Laplace Transform	ROC
	$x(t), x_1(t), x_2(t)$	$X(s), X_1(s), X_2(s)$	R, R_1, R_2
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(S) + bX_2(S)$	$R_1 \cap R_2$
Time Shifting	$x(t-t_0)$	$e^{-st_0}X(S)$	R
Shift in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	R
Time Scaling	x(at)	$\frac{1}{ a }X(\frac{s}{a})$	Scaled ROC
Conjugation	$x^*(t)$	$X^{*}(S^{*})$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in the	dx(t)	SX(S)	At least R
time-Domain	dt		
Differentiation in the	-tx(t)	dX(S)	R
s-Domain		dS	
Integration in the	t f	$1_{\mathbf{v}(\mathbf{c})}$	At least
Time Domain	$\int_{-\infty} x(\tau) d\tau$	$\frac{1}{S}$ \overline{S}	$R \cap \big\{ \operatorname{Re}(s) > 0 \big\}$
Initial value theorem	$x(0^+) = \lim_{s \to \infty} SX(S)$		
Final value theorem	$\lim_{t\to\infty} x(t) = \lim_{s\to0} SX(S)$		

Laplace Transform Property for Bilateral

Laplace Transform Property for Unilateral

L	L	
Property	Signal	Laplace Transform
	$x(t), x_1(t), x_2(t)$	$\chi(s), \chi_1(s), \chi_2(s)$
Linearity	$ax_1(t) + bx_2(t)$	$a\chi_1(S)+b\chi_2(S)$
Shift in the s-Domain	$e^{s_0t}x(t)$	$\chi(s-s_0)$
Time Scaling	x(at)	$\frac{1}{ a }\chi(\frac{s}{a})$
Conjugation	$x^*(t)$	$\chi^*(S)$
Convolution	$x_1(t) * x_2(t)$	$\chi_1(s)\chi_2(s)$
Differentiation in the	dx(t)	$S\chi(S) - x(0^{-})$
time-Domain	dt	
	$\frac{d^2 x(t)}{dt^2}$	$S^{2}\chi(S) - sx(0^{-}) - x'(0^{-})$
Differentiation in the s-Domain	-tx(t)	$\frac{d\chi(S)}{dS}$
Integration in the	$\int_{a}^{t} x(\sigma) d\sigma$	$\frac{1}{\gamma(S)}$
Time Domain	$\int_{-\infty}^{\infty} \lambda(t) dt$	S
Initial value theorem	$x(0^+) = \lim_{s \to \infty} S\chi(S)$	
Final value theorem	$\lim_{t\to\infty} x(t) = \lim_{s\to 0} S\chi(S)$	

	X(s)	<i>x</i> (<i>t</i>)	x(kT) or $x(k)$	<i>X</i> (<i>z</i>)
1.	_	_	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1
2.			$ \begin{array}{l} \delta_0(n-k)\\ 1, n=k\\ 0, n\neq k \end{array} $	z ^{-k}
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e-#	e ^{-akT}	$\frac{1}{1-e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t ²	$(kT)^2$	$\frac{T^2 z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3}$
7.	<u>6</u> s ⁴	t ³	(kT) ³	$\frac{T^3 z^{-1} (1 + 4 z^{-1} + z^{-2})}{(1 - z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1 - e^{-\alpha t}$	$1 - e^{-akT}$	$\frac{(1-e^{-e^T})z^{-1}}{(1-z^{-1})(1-e^{-e^T}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	e ^{-ai} – e ^{-bi}	$e^{-ikT} - e^{-ikT}$	$\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-a}	kTe ^{-skT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1-(1+aT)e^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$

Table of z transforms 2

	12/->	(1)		
	X(s)	x(t)	x(kT) or $x(k)$	X(z)
12.	$\frac{2}{(s+a)^3}$	t ² e-w	$(kT)^2 e^{-\kappa kT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at - 1 + e^{-at}$	$akT - 1 + e^{-skT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2+\omega^2}$	sin oot	sin wkT	$\frac{z^{-1}\sin\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	COS wt	$\cos \omega kT$	$\frac{1-z^{-1}\cos\omega T}{1-2z^{-1}\cos\omega T+z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-w} sin w	$e^{-\epsilon kT} \sin \omega kT$	$\frac{e^{-sT}z^{-1}\sin\omega T}{1-2e^{-sT}z^{-1}\cos\omega T+e^{-2sT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos \omega t$	$e^{-akT}\cos{\omega kT}$	$\frac{1 - e^{-e^T} z^{-1} \cos \omega T}{1 - 2e^{-e^T} z^{-1} \cos \omega T + e^{-2e^T} z^{-2}}$
18.			a ^k	$\frac{1}{1-az^{-1}}$
19.			a^{k-1} k = 1,2,3,	$\frac{z^{-1}}{1-az^{-1}}$
20.			ka ^{k - 1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			k ² a ^{k - 1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			k ³ a ^{k-1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			k ⁴ a ^{k - 1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^3}$
24.			$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$
25.			$\frac{k(k-1)}{2!}$	$\frac{z^{-2}}{(1-z^{-1})^3}$
26.		$\frac{k(k-1)}{k}$	$\frac{(k-m+2)}{(m-1)!}$	$\frac{z^{-m+1}}{(1-z^{-1})^m}$
27.			$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{z^{-2}}{(1-az^{-1})^3}$
28.	28. $\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}a^{k-m+1}$		$(+2)a^{k-m+1}$	$\frac{z^{-m+1}}{(1-az^{-1})^m}$

Property table:

	x(t) or $x(k)$	$\mathcal{Z}[x(t)]$ or $\mathcal{Z}[x(k)]$
1.	ax(t)	aX(z)
2.	$ax_1(t) + bx_2(t)$	$aX_1(z) + bX_2(z)$
3.	x(t+T) or $x(k+1)$	zX(z) - zx(0)
4.	x(t+2T)	$z^2 X(z) - z^2 x(0) - z x(T)$
5.	x(k + 2)	$z^2 X(z) - z^2 x(0) - z x(1)$
6.	x(t+kT)	$z^k X(z) - z^k x(0) - z^{k-1} x(T) - \cdots - z x(kT - T)$
7.	x(t-kT)	$z^{-k}X(z)$
8.	x(n+k)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(1) - \cdots - zx(k-1)$
9.	x(n-k)	$z^{-k}X(z)$
10.	tx(t)	$-Tz\frac{d}{dz}X(z)$
11.	kx(k)	$-z\frac{d}{dz}X(z)$
12.	$e^{-at}x(t)$	$X(ze^{aT})$
13.	$e^{-ak}x(k)$	$X(ze^{a})$
14.	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
15.	$ka^kx(k)$	$-z\frac{d}{dz}X\left(\frac{z}{a}\right)$
16.	x(0)	$\lim_{z\to\infty} X(z) \text{ if the limit exists}$
17.	x(∞)	$\lim_{z\to 1} \left[(1-z^{-1})X(z) \right] \text{ if } (1-z^{-1})X(z) \text{ is analytic on} \\ \text{and outside the unit circle}$
18.	$\overline{v}x(k) = x(k) - x(k-1)$	$(1-z^{-1})X(z)$
19.	$\Delta x(k) = x(k+1) - x(k)$	(z-1)X(z)-zx(0)
20.	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$
21.	$\frac{\partial}{\partial a}x(t,a)$	$\frac{\partial}{\partial a}X(z,a)$
22.	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$
23.	$\sum_{k=0}^{n} x(kT) y(nT - kT)$	X(z)Y(z)
24.	$\sum_{k=0}^{\infty} x(k)$	X(1)

Discrete function	z Transform
x(k + 4)	$z^{4}X(z) - z^{4}x(0) - z^{3}x(1) - z^{2}x(2) - zx(3)$
x(k + 3)	$z^{3}X(z) - z^{3}x(0) - z^{2}x(1) - zx(2)$
x(k + 2)	$z^2 X(z) - z^2 x(0) - z x(1)$
x(k + 1)	zX(z)-zx(0)
<i>x</i> (<i>k</i>)	X(z)
x(k-1)	$z^{-1}X(z)$
x(k-2)	$z^{-2}X(z)$
x(k-3)	$z^{-3}X(z)$
x(k-4)	$z^{-4}X(z)$

Table: z transform of x(k+m) and x(k-m)